Compressible generalized hybrid Monte Carlo.

نویسندگان

  • Youhan Fang
  • J M Sanz-Serna
  • Robert D Skeel
چکیده

One of the most demanding calculations is to generate random samples from a specified probability distribution (usually with an unknown normalizing prefactor) in a high-dimensional configuration space. One often has to resort to using a Markov chain Monte Carlo method, which converges only in the limit to the prescribed distribution. Such methods typically inch through configuration space step by step, with acceptance of a step based on a Metropolis(-Hastings) criterion. An acceptance rate of 100% is possible in principle by embedding configuration space in a higher dimensional phase space and using ordinary differential equations. In practice, numerical integrators must be used, lowering the acceptance rate. This is the essence of hybrid Monte Carlo methods. Presented is a general framework for constructing such methods under relaxed conditions: the only geometric property needed is (weakened) reversibility; volume preservation is not needed. The possibilities are illustrated by deriving a couple of explicit hybrid Monte Carlo methods, one based on barrier-lowering variable-metric dynamics and another based on isokinetic dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid atomistic-continuum methods for multiscale hydrodynamics

We discuss hybrid atomistic-continuum methods for multiscale hydrodynamic applications. Both dense fluid and dilute gas formulations are considered. The choice of coupling method and its relation to the fluid physics is discussed. The differences in hybrid methods resulting from underlying compressible and incompressible continuum formulations as well as the importance of timescale decoupling a...

متن کامل

Bayesian Estimation of GARCH Model by Hybrid Monte Carlo

The hybrid Monte Carlo (HMC) algorithm is used for Bayesian analysis of the generalized autoregressive conditional heteroscedasticity (GARCH) model. The HMC algorithm is one of Markov chain Monte Carlo (MCMC) algorithms and it updates all parameters at once. We demonstrate that how the HMC reproduces the GARCH parameters correctly. The algorithm is rather general and it can be applied to other ...

متن کامل

Generalized Hybrid Monte-carlo

We propose a modification of the Hybrid Monte-Carlo method to sample equilibrium distributions of continuous field models. The method allows an efficient implementation of Fourier acceleration and is shown to reduce completely critical slowing down for the Gaussian model, i. e., z = 0.

متن کامل

A Metropolis Adjusted Nosé-hoover Thermostat

We present a Monte Carlo technique for sampling from the canonical distribution in molecular dynamics. The method is built upon the Nosé-Hoover constant temperature formulation and the generalized hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically resampled during a Monte Carlo step. Mathematics Subject Classific...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 140 17  شماره 

صفحات  -

تاریخ انتشار 2014